home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Shareware Grab Bag
/
Shareware Grab Bag.iso
/
050
/
disk_425.arc
/
LEAST3.PAS
< prev
next >
Wrap
Pascal/Delphi Source File
|
1985-04-03
|
4KB
|
158 lines
program least3; { --> 209 }
{ Pascal program to perform a linear least-squares fit }
{ with Gauss-Jordan routine }
{ Sperate modules needed:
GAUSSJ,
PLOT }
const maxr = 20; { data prints }
maxc = 4; { polynomial terms }
type ary = array[1..maxr] of real;
arys = array[1..maxc] of real;
ary2 = array[1..maxr,1..maxc] of real;
ary2s = array[1..maxc,1..maxc] of real;
var x,y,y_calc : ary;
resid : ary;
coef,sig : arys;
nrow,ncol : integer;
correl_coef : real;
first,done : boolean;
external procedure cls;
procedure get_data(var x: ary; { independant variable }
var y: ary; { dependant variable }
var nrow: integer); { length of vectors }
{ get values for n and arrays x,y }
var i : integer;
begin
nrow:=9;
for i:=1 to nrow do x[i]:=i;
y[1]:=2.07; y[2]:=8.6;
y[3]:=14.42; y[4]:=15.8;
y[5]:=18.92; y[6]:=17.96;
y[7]:=12.98; y[8]:=6.45;
y[9]:=0.27;
end; { proceddure get data }
procedure write_data;
{ print out the answers }
var i : integer;
begin
if first then first:=false else cls;
writeln;
writeln;
writeln(' I X Y YCALC RESID');
for i:=1 to nrow do
writeln(i:3,x[i]:8:1,y[i]:9:2,y_calc[i]:9:2,resid[i]:9:2);
writeln; writeln(' Coefficients errors ');
writeln(coef[1],' ',sig[1],' Constant term');
for i:=2 to ncol do
writeln(coef[i],' ',sig[i]); { other terms }
writeln;
writeln('Correlation coefficient is ',correl_coef:8:5)
end; { write_data }
{procedure square(x: ary2;
y: ary;
var a: ary2s;
var g: arys;
nrow,ncol: integer);}
{ matrix multiplication routine }
{ a= transpose x times x }
{ g= y times x }
{$I SQUARE.LIB }
{external procedure gaussj(var b: ary2s;
y: arys;
var coef: arys;
ncol: integer;
var error: boolean);
}
{$I GAUSSJ.LIB }
procedure linfit(x, { independant variable }
y: ary; { dependent variable }
var y_calc: ary; { calculated dep. variable }
var resid: ary; { array of residuals }
var coef: arys; { coefficients }
var sig: arys; { error on coefficients }
nrow: integer; { length of array }
var ncol: integer); { number of terms }
{ least squares fit to nrow sets of x and y pairs of points }
{ Seperate procedures needed:
SQUARE -> form square coefficient matrix
GAUSSJ -> Gauss-Jordan elimination }
var xmatr : ary2; { data matrix }
a : ary2s; { coefficient matrix }
g : arys; { constant vector }
error : boolean;
i,j,nm : integer;
xi,yi,yc,srs,see,
sum_y,sum_y2 : real;
begin { procedure linfit }
for i:=1 to nrow do
begin { setup matrix }
xi:=x[i];
xmatr[i,1]:=1.0; { first column }
for j:=2 to ncol do { other columns}
xmatr[i,j]:=xmatr[i,j-1]*xi
end;
square(xmatr,y,a,g,nrow,ncol);
gaussj(a,g,coef,ncol,error);
sum_y:=0.0;
sum_y2:=0.0;
srs:=0.0;
for i:=1 to nrow do
begin
yi:=y[i];
yc:=0.0;
for j:=1 to ncol do
yc:=yc+coef[j]*xmatr[i,j];
y_calc[i]:=yc;
resid[i]:=yc-yi;
srs:=srs+sqr(resid[i]);
sum_y:=sum_y+yi;
sum_y2:=sum_y2+yi*yi
end;
correl_coef:=sqrt(1.0-srs/(sum_y2-sqr(sum_y)/nrow));
if nrow=ncol then nm:=1
else nm:=nrow-ncol;
see:=sqrt(srs/nm);
for i:=1 to ncol do { errors on solution }
sig[i]:=see*sqrt(a[i,i])
end; { linfit }
{external procedure plot(x,y,z: ary; nrow: integer);
}
{$I C:PLOT.LIB }
begin { main program }
cls;
first:=true;
done:=false;
writeln;
get_data(x,y,nrow);
repeat
repeat
write('Order of polynomial fit? ');
readln(ncol)
until ncol<5;
if ncol<1 then done:=true { quit if ncol<1 }
else
begin
ncol:=ncol+1; { order is one less }
linfit(x,y,y_calc,resid,coef,sig,nrow,ncol);
write_data;
plot(x,y,y_calc,nrow)
end { else }
until done
end.